ورود به حساب ثبت نام جدید فراموشی کلمه عبور
برای ورود به حساب کاربری خود، نام کاربری و کلمه عبورتان را در زیر وارد کرده و روی «ورود به سایت» کلیک کنید.





اگر فرم ورود برای شما نمایش داده نمیشود، اینجا را کلیک کنید.









اگر فرم ثبت نام برای شما نمایش داده نمی‌شود، اینجا را کلیک کنید.









اگر فرم بازیابی کلمه عبور برای شما نمایش داده نمی‌شود، اینجا را کلیک کنید.





کاربران برچسب زده شده

نمایش نتایج: از 1 به 2 از 2
  1. #1
    2007/12/02
    اصفهان
    494
    2

    ماشین هاي الكتريكي

    ماشین هاي الكتريكي
    وسايل تبديل انرژي الكترومكانيكي گردان را ماشينهاي الكتريكي مي گويند.
    طبقه بندي ماشينهاي الكتريكي
    ماشينهاي الكتريكي به دو طريق دسته بندي مي شوند:
    از نظر نوع جريان الكتريكي
    الف- ماشينهاي الكتريكي جريان مستقيم
    ب- ماشينهاي الكتريكي جريان متناوب
    از نظر نوع تبديل انرژي
    الف- مولدهاي الكتريكي كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كنند
    ب- موتورهاي الكتريكي كه انرژي الكتريكي را به انرژي مكانيكي تبديل مي كنند
    به طور كلي ماشينهاي الكتريكي جزء وسايل تبديل انرژي غير خطي هستند يعني هر تغيير در ورودي هميشه به يك نسبت در خروجي ظاهر نمي شود.
    موتور ساده جريان مستقيم :
    موتور ساده از نظر ساختماني مانند مولد ساده جريان مستقيم مي باشد فقط نحوه كار آن با مولد ساده جريان مستقيم تفاوت دارد. در موتور ساده هاديها از طريق كوموتاتور و جاروبكها به يك منبع جريان مستقيم متصل مي شود در اينصورت جرياني از هاديها عبور كرده و در نتيجه مطابق نيروي لورنس به هاديها نيروي وارد ميشود و آنها به حركت در مي آيند. .
    نحوه ايجاد نيرو و گشتاور در موتور ساده: در صورتيكه از يك كلاف تك حلقه كه بين قطبهاي يك مغناطيس قرار دارد جريان الكتريكي عبور كند به بازوي سمت راست نيروي به سمت بالا و به بازوي سمت چپ نيروي بسمت پايين وارد مي شود با وارد شدن دو نيروي مختلف الجهت به دو طرف كلاف طبيعي است كه كلاف حول محورش شروع به دوران خواهد نمود يعني وارد آمدن زوج نيرو موجب ايجاد گشتاور لازم شده است.
    در اين موتور ساده اگر صفحه كلاف عمود بر خطوط ميدان مغناطيسي قرار گيرد به آن گشتاوري وارد نميشود در ضمن كه گشتاور وارد شده نيز دامنه يكنواخت ندارد براي رفع شدن اين معايب مي بايست تعداد كلافها و تيغه هاي كوموتاتور را افزايش داد .كلافها در زاويه هاي مختلف قرار مي گيرد و با هم توسط تيغه هاي كوموتاتور سري مي شود .
    تغيير جهت گردش در موتور ساده DC :
    تغيير جهت گردش موتور ساده به دو روش زير ممكن است:
    -1 تغيير جهت جريان در كلاف كه با تغيير پلاريته ولتاژ منبع از خارج موتور ميسر است
    -2 تغيير قطبهاي مغناطيسي كه با تغيير جهت جريان در سيم پيچي تحريك ممكن است


    موتورهاي DC : يکي از اولين موتورهاي دوار، اگر نگوييم اولين، توسط ميشل فارادي در سال 1821م ساخته شده بود و شامل يک سيم آويخته شده آزاد که در يک ظرف جيوه غوطه ور بود، مي شد. يک آهنرباي دائم در وسط ظرف قرار داده شده بود. وقتي که جرياني از سيم عبور مي کرد، سيم حول آهنربا به گردش در مي آمد و نشان مي داد که جريان منجر به افزايش يک ميدان مغناطيسي دايرهاي اطراف سيم مي شود. اين موتور اغلب در کلاس هاي فيزيک مدارس نشان داده مي شود، اما گاهاً بجاي ماده سمي جيوه، از آب نمک استفاده مي شود.
    موتور کلاسيک DC داراي آرميچري از آهنرباي الکتريکي است. يک سوييچ گردشي به نام کموتاتور جهت جريان الکتريکي را در هر سيکل دو بار برعکس مي کند تا در آرميچر جريان يابد و آهنرباهاي الکتريکي، آهنرباي دائمي را در بيرون موتور جذب و دفع کنند.
    سرعت موتور DC به مجموعه اي از ولتاژ و جريان عبوري از سيم پيچهاي موتور و بار موتور يا گشتاور ترمزي، بستگي دارد. سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جريان است. معمولاً سرعت توسط ولتاژ متغير يا عبور جريان و با استفاده از تپ ها (نوعي کليد تغيير دهنده وضعيت سيم پيچ) در سيم پيچي موتور يا با داشتن يک منبع ولتاژ متغير، کنترل مي شود. بدليل اينکه اين نوع از موتور مي تواند در سرعتهاي پايين گشتاوري زياد ايجاد کند، معمولاً از آن در کاربردهاي ترکشن (کششي) نظير لکوموتيوها استفاده مي کنند.

    اما به هرحال در طراحي کلاسيک محدوديتهاي متعددي وجود دارد که بسياري از اين محدوديت ها ناشي از نياز به جاروبک هايي براي اتصال به کموتاتور است. سايش جاروبک ها و کموتاتور، ايجاد اصطکاک مي کند و هرچه که سرعت موتور بالاتر باشد، جاروبک ها مي بايست محکم تر فشار داده شوند تا اتصال خوبي را برقرار کنند. نه تنها اين اصطکاک منجر به سر و صداي موتور مي شود بلکه اين امر يک محدوديت بالاتري را روي سرعت ايجاد مي کند و به اين معني است که جاروبک ها نهايتاً از بين رفته نياز به تعويض پيدا مي کنند. اتصال ناقص الکتريکي نيز توليد نويز الکتريکي در مدار متصل مي کند. اين مشکلات با جابجا کردن درون موتور با بيرون آن از بين مي روند، با قرار دادن آهنرباهاي دائم در داخل و سيم پيچ ها در بيرون به يک طراحي بدون جاروبک مي رسيم.
    موتورهاي ميدان سيم پيچي شده
    آهنرباهاي دائم در (استاتور) بيروني يک موتور DC را ميتوان با آهنرباهاي الکتريکي تعويض کرد. با تغيير جريان ميدان (سيم پيچي روي آهنرباي الکتريکي) مي توانيم نسبت سرعت/گشتاور موتور را تغيير دهيم. اگر سيم پيچي ميدان به صورت سري با سيم پيچي آرميچر قرار داده شود، يک موتور گشتاور بالاي کم سرعت و اگر به صورت موازي قرار داده شود، يک موتور سرعت بالا با گشتاور کم خواهيم داشت. مي توانيم براي بدست آوردن حتي سرعت بيشتر اما با گشتاور به همان ميزان کمتر، جريان ميدان را کمتر هم کنيم. اين تکنيک براي ترکشن الکتريکي و بسياري از کاربردهاي مشابه آن ايده آل است و کاربرد اين تکنيک مي تواند منجر به حذف تجهيزات يک جعبه دنده متغير مکانيکي شود.
    موتورهاي يونيورسال
    يکي از انواع موتورهاي DC ميدان سيم پيچي شده موتور ينيورسال است. اسم اين موتورها از اين واقعيت گرفته شده است که اين موتورها را مي توان هم با جريان DC و هم AC بکار برد، اگر چه که اغلب عملاً اين موتورها با تغذيه AC کار مي کنند. اصول کار اين موتورها بر اين اساس است که وقتي يک موتور DC ميدان سيم پيچي شده به جريان متناوب وصل مي شود، جريان هم در سيم پيچي ميدان و هم در سيم پيچي آرميچر (و در ميدانهاي مغناطيسي منتجه) همزمان تغيير مي کند و بنابراين نيروي مکانيکي ايجاد شده همواره بدون تغيير خواهد بود. در عمل موتور بايستي به صورت خاصي طراحي شود تا با جريان AC سازگاري داشته باشد (امپدانس/رلوکتانس بايستي مدنظر قرار گيرند)، و موتور نهايي عموماً داراي کارايي کمتري نسبت به يک موتور معادل DC خالص خواهد بود. مزيت اين موتورها اين است که ميتوان تغذيه ي AC را روي موتورهايي که داراي مشخصه هاي نوعي موتورهاي DC هستند بکار برد، خصوصاً اينکه اين موتورها داراي گشتاور راه اندازي بسيار بالا و طراحي بسيار جمع و جور در سرعتهاي بالا هستند. جنبه منفي اين موتورها تعمير و نگهداري و مشکل قابليت اطمينان آنهاست که به علت وجود کموتاتور ايجاد مي شود و در نتيجه اين موتورها به ندرت در صنايع مشاهده مي شوند اما عمومي ترين موتورهاي AC در دستگاه هايي نظير مخلوط کن و ابزارهاي برقي اي که گاهاً استفاده مي شوند، هستند.
    بررسي مولدهاي جريان مستقيم
    کاربرد مولدهاي جريان مستقيم
    از مولدهاي جريان مستقيم بيشتر به عنوان منبع انرژي براي تحريك مولدهاي نيروگاهي و ماشينهاي خودكار، هواپيماها، جوشكاري با قوس الكتريكي، قطارهاي راه آهن، اتوبوسهاي برقي، زير درياييها و غيره استفاده مي نمايند بدين ترتيب كاربرد مولدهاي جريان مستقيم زياد و متنوع است و لذا مولدهاي جريان مستقيم با توان ها و دورهاي مختلف ساخته مي شوند.
    طبقه بندي مولدهاي جريان مستقيم
    ماشين هاي DC واقعي داراي دو دسته سيم پيچ هستند
    1- سيم پيچ آرميچر
    2- سيم پيچ تحريك (قطب ها)
    كه با توجه به نحوه ارتباط الكتريكي سيم پيچ تحريك و سيم پيچ آرميچر به دو دسته كلي تقسيم بندي مي شوند.
    1- مولدهاي تحريك مستقل
    2- مولدهاي خود تحريك
    - در مولدهاي تحريك مستقل بين سيم پيچ آرميچر و سيم پيچ تحريك هيچ ارتباط الكتريكي وجود ندارد
    - در مولدهاي خود تحريك بين اين دو سيم پيچ ارتباط الكتريكي وجود دارد و انرژي سيم پيچ تحريك از انرژي توليدي خود مولد تامين مي شود نحوه اين ارتباط الكتريكي مولدهاي خود تحريك را به دو دسته تقسيم بندي مي كند.
    - مولدهاي تحريك شنت يا موازي
    - مولدهاي تحريك سري
    - مولدهاي تحريك مختلط يا كمپوند
    با توجه به اهميت مولدهاي DC به بررسي كامل اين مولدها و مشخصات آنها مي پردازيم

    مولد تحريك مستقل
    همانطور كه گفته شد در اين مولد بين سيم پيچ تحريك و آرميچر هيچ ارتباط الكتريكي وجود ندارد و مدار تحريك توسط يك منبع تغذيه جريان مستقيم خارجي تغذيه ميشود به اين منبع اكسايتر گفته ميشود. در مدار تحريك از يك مقاومت متغيير استفاده مي شود تا جريان تحريك را كنترل و فوران مغناطيسي قطبها را تغيير دهد. شكل زير مدار معادل الكتريكي يك مولد تحريك مستقل را نشان ميدهد.
    در اين مولد جريان بار، ولتاژ ترمينال و جريان تحريك از روابط زير بدست مي آيد.
    IL : جريان بار
    IA : جريان آرميچر
    VT : ولتاژ ترمينال
    EA : نيرومحركه القاء شده آرميچر
    RA : مقاومت اهمي آرميچر
    ε : افت ولتاژ ناشي از عكس العمل
    VF : ولتاژ تحريك
    RF : مجموع مقاومت سيم پيچ تحريك و رئوستاي تنظيم
    IF : جريان تحريك
    - مشخصه بي باري يا مشخصه مغناطيسي مولد تحريك مستقل
    مشخصه بي باري يا مغناطيس مولد تغييرات نيرومحركه القاء شده آرميچر (EA) را به ازاء تغييرات جريان تحريك (IF) در شرايط دور ثابت n = const و بدون بار IL = 0 نشان ميدهد اين مشخصه در شكل زير نشان داده شده است.
    در بررسي بيشتر اين مشخصه به نكات زير توجه بيشتري داريم
    1- مشخصه مغناطيسي به سه قسمت تقسيم بندي مي شود قسمت اول منحني تقريباٌ خط مستقيم است زيرا به ازاء جريان تحريك كم، تمام نيرومحركه مغناطيسي براي ايجاد فوران در فاصله هوايي كه قابليت نفوذ مغناطيسي آن ثابت است به مصرف مي رسد اما در قسمت دوم اشباع ماشين شروع شده و مشخصه به شكل منحني در مي آيد و در قسمت سوم كه هسته به اشباع مي رود مشخصه با محور افقي تقريباٌ موازي مي شود.
    نقطه كار: ماشين بايد در قسمت منحني يعني شروع حالت اشباع باشد زيرا اگر ولتاژ نامي ماشين روي قسمت خطي قرار گيرد به ازاء تغيير جزيي در جريان تحريك ولتاژ به شدت تغيير مي كند و كار ماشين ناپايدار است و چنانچه روي قسمت اشباع شده واقع شود امكان تنظيم ولتاژ ماشين محدود ميشود.
    2- در صورتيكه اين مشخصه را براي سرعت ثابت ديگري بدست آوريم شكل كلي مشخصه تغيير نخواهد كرد در صورتيكه سرعت بالاتر انتخاب كنيم مشخصه در بالاتر و به ازاء سرعت پايين تر مشخصه در پايينتر تشكيل مي شود.
    نكته: اگر مشخصه را براي دور نامي داشته باشيم مي توان مشخصه را براي دورهاي ديگر نيز بدست آوريم.
    مشخصه خارجي يا بارداري مولد تحريك مستقل: اين مشخصه عبارت است از تغييرات ولتاژ خروجي به ازاء تغييرات جريان بار در شرايط جريان تحريك و سرعت ثابت
    VT = f.(IL) RF=const n=const
    اين مشخصه در حقيقت نشان ميدهد كه با عبور جريان از آرميچر افت ولتاژ اهمي آرميچر IA.RA و افت ولتاژ ناشي از عكس العمل مغناطيسي چگونه باعث كاهش ولتاژ ترمينال مي شوند.
    مولد تحريك شنت
    در اين مولد مدار تحريك با آرميچر به صورت موازي وصل مي شود. جريان تحريك تابع ولتاژ خروجي و مقاومت مدار تحريك است و قسمتي (حدود 2 تا 3 درصد) از جريان آرميچر را تشكيل ميدهد. براي اينكه با جريان تحريك كم بتوان آمپر دور زياد براي مولد تامين نمود بايد تعداد دور سيم پيچ تحريك زياد باشد و در نتيجه سطح مقطع آن بايد كاهش يابد. ولتاژ خروجي مولد توسط يك مقاومت متغيير كه با سيم پيچ تحريك سري مي شود تنظيم مي گردد. مدار معادل الكتريكي مولد شنت بصورت زير است:
    روابط زير نيز براي جريان آرميچر، ولتاژ خروجي و جريان تحريك مولد شنت برقرار است
    راه اندازي مولد شنت و تعيين نقطه كار: شروع كار مولد شنت بر اثر وجود پسماند مغناطيسي قطبها مي باشد. يعني ژنراتور بوسيله محرك با دور نامي به گردش در مي آوريم به علت قطع خطوط قواي پس ماند توسط هاديهاي آرميچر، ولتاژي در آن القاء مي شود. اين ولتاژ به دو سر مدار تحريك اعمال مي گردد. جريان كمي از سيم پيچ قطبها عبور مي كند و درنتيجه فوران قطبها زياد شده (در صورتيكه فوران هم جهت پسماند باشد) و نيرومحركه الكتريكي بيشتري در آرميچر القاء ميشود و ولتاژ دو سر مدار تحريك بالا مي رود و مجدداٌ جريان تحريك افزايش يافته و ولتاژ القائي بزرگتر ميشود. افزايش ولتاژ القائي تا جايي ادامه مي يابد كه به VT = Rf.If برسد در اين مقدار نيرومحركه القايي ثابت مي ماند. اگر مشخصه Rf.If را رسم كنيم خطي بدست مي آيد كه در نقطه اي مانند B منحني بي باري را قطع مي كند به خط Rf.If خط القاء گفته ميشود نقطه تقاطع اين خط با منحني نقطه كار مولد شنت مي باشد .
    مقاومت بحراني و دور بحراني: در صورتيكه مقاومت مدار تحريك آنقدر زياد شود كه خط القاء بر منحني بي باري مماس شود مولد حالت ناپايدار خواهد داشت و نيرومحركه نمي تواند مقدار معيني داشته باشد در اين حالت مي گويند مقاومت مدار تحريك بحراني است. اگر مدار تحريك مقاومت بيش از اين داشته باشد ديگر مولد تحريك نخواهد شد در صورتيكه سرعت مولد آنقدر كم باشد كه مشخصه بي باري بر خط القاء مماس شود نيز مولد به حالت ناپايدار خواهد رسيد اين دور نيز به دور بحراني معروف است.
    عوامل زير سبب عدم تحريك يا عدم راه اندازي مولد شنت مي شود :

    1- پس ماند مغناطيسي ناچيز يا صفر باشد
    2- جهت جريان تحريك طوري باشد كه فوران ناشي از فوران پسماند را خنثي كند
    3- مقاومت مدار تحريك از حد معيني بيشتر باشد
    4- جهت گردش آرميچر برعكس باشد كه سبب عكس شدن جريان تحريك مي شود
    5- دور محور از حد معين كمتر باشد
    مشخصه مغناطيسي يا بي باري مولد شنت: همانطور كه در مورد مولد تحريك مستقل گفته شد مشخصه بي باري تغييرات نيرومحركه القاء شده آرميچر نسبت به تغييرات جريان تحريك در شرايط بدون بار و دور ثابت است. مشخصه بي باري مولد شنت با مولد تحريك مستقل تفاوتي ندارد و بصورت زير مي باشد.
    مشخصه بارداري يا خارجي مولد شنت: اين مشخصه تغييرات ولتاژ ترمينال به ازاء تغييرات جريان بار را در شرايط دور ثابت و ثابت RF = نشان ميدهد.در مولد شنت سه عامل باعث افت ولتاژ خروجي خواهد شد:
    1- افت ولتاژ اهمي آرميچر
    2- افت ولتاژ ناشي از عكس العمل
    3- افت ولتاژ خروجي بدليل كاهش جريان تحريك بعلت كاهش ولتاژ خروجي ناشي از دو عامل بالا
    نكته مهم ديگر در اين مولد با كاهش مقاومت بار جريان IL (بار) تا مقدار معيني Icr كه معمولاٌ 2 تا 5/2 برابر جريان نامي است افزايش مي يابد و سپس رو به كاهش مي رود. توجيه اين مسئله (يعني كاهش جريان بار با توجه به كم شدن مقاومت بار) به اين صورت است كه در نقطه برگشت منحني اثر كاهش ولتاژ خروجي آنقدر زياد است كه نمي تواند جريان خروجي بار زياد شود. شكل زير مشخصه خارجي مولد شنت را در مقايسه با مولد تحريك مستقل را نشان ميدهد.
    كاربرد مولد شنت: از اين مولدها بعلت اينكه تنظيم ولتاژ بهتري دارند در شارژ باتري ها و تامين برق روشنايي و تغذيه سيم پيچ مولدهاي نيروگاهي استفاده ميشود.
    مولد تحريك سري
    در اين ژنراتور آرميچر با سيم پيچ تحريك به صورت سري قرار مي گيرد. از آنجا كه جريان بار از سيم پيچ آرميچر و سيم پيچ تحريك عبور كند بايد سيم پيچ تحريك داراي سطح مقطع زياد و تعداد دور كم باشد. مدار الكتريكي مولد سري و روابط آن بصورت زير است.
    IS : جريان مدار تحريك سري
    RS : مقاومت سيم پيچ تحريك سري
    مشخصه بي باري مولد سري: (VT = f(IL) n = const)
    براي بدست آوردن مشخصه خارجي مولد سري دور مولد را به دور نامي مي رسانيم، اول حداكثر مقاومت بار را در مدار قرار ميدهيم در اين حالت با عبور جريان كم از آرميچر و تحريك، فوران اگر مخالف پسماند نباشد نيرومحركه القايي زياد ميشود كه در نتيجه ولتاژ خروجي افزايش مي يابد با كاهش مقاومت بار جريان تحريك كه برابر با جريان بار و آرميچر است زياد شده و قطبها را اشباع مي كند و در نتيجه فوران ثابت مي ماند و چون دور هم ثابت است نيرومحركه ثابت مي ماند اما ولتاژ خروجي به دلايل زير كاهش مي يابد:
    1- افت ولتاژ در هادي هاي آرميچر
    2- افت ولتاژ در سيم پيچي تحريك
    3- افت ولتاژ بر اثر عكس العمل مغناطيسي آرميچر
    كاربرد مولد سري: مورد استفاده مولد سري خيلي كم است چون ولتاژ دو سر آرميچر بر اثر تغيير جريان بار به طور قابل ملاحظه اي تغيير مي كند. در عين حال از اين مولد بعنوان جبران كننده افت ولتاژ خطوط جريان مستقيم استفاده ميشود.
    مولد مختلط يا كمپوند
    اين مولد داراي دو سيم تحريك سري و موازي با آرميچر مي باشد.
    مولد كمپوند از نظر اتصالات سيم پيچ داراي دو نوع هستند:
    1- مولد كمپوند با انشعاب بلند
    2- مولد كمپوند با انشعاب كوتاه
    مدار الكتريكي اين دو نوع كمپوند در شكل زير نشان داده شده است
    روابط تحليل مولد كمپوند بصورت زير است
    مولدهاي كمپوند از نظر جهت فوران سيم پيچ تحريك سري بصورت زير تقسيم بندي مي شود:
    1- مولد كمپوند اضافي
    2- مولد كمپوند نقصاني
    - مولد كمپوند اضافي: فوران ناشي در اين مولد فوران سيم پيچ تحريك شنت را تقويت مي كند در اين مولد سيم پيچ تحريك شنت نقش اصلي را بعهده دارد و سيم پيچ تحريك سري براي جبران افت ولتاژ اهمي و عكس العمل مغناطيسي آرميچر به كار ميرود.
    - مولد كمپوند نقصاني: در اين مولد فوران ناشي از سيم پيچ تحريك سري با فوران ناشي از سيم پيچ تحريك شنت مخالفت مي كند.
    مشخصه خارجي مولد كمپوند اضافي
    براي مولد كمپوند اضافي در حالت بارداري ممكن است يكي از سه حالت زير پيش آيد:
    1 با افزايش بار ولتاژ خروجي نيز زياد شود اين حالت را فوق كمپوند مي گويند. در اين حالت افزايش نيرومحركه ناشي از سيم پيچ سري بزرگتر از افت ولتاژ در اثر مقاومت و عكس العمل آرميچر است.
    2 با افزايش بار ولتاژ خروجي ثابت مي ماند، در اين حالت افت ولتاژ ناشي از مقاومت و عكس العمل با افزايش نيرومحركه ناشي از سيم پيچ سري جبران ميشود. به اين حالت كمپوند مسطح گفته ميشود.
    3با افزايش بار، ولتاژ خروجي كاهش مي يابد در اين حالت افزايش نيرومحركه ناشي از سيم پيچ سري نمي تواند افت ولتاژها را جبران كند اين حالت را زير كمپوند مي گويند. حتي در اين حالت افت ولتاژ مولد كمتر از افت ولتاژ مولد شنت مي باشد. شكل اين مشخصه ها در زير رسم شده است.
    مشخصه بارداري مولد كمپوند نقصاني
    در اين مولد ولتاژ خروجي با افزايش بار به شدت كاهش مي يابد بدليل اينكه با افزايش بار جريان سيم پيچ تحريك سري زيادتر و در نتيجه فوران سيم پيچ سري بيشتر شده و ميدان اصلي را تضعيف تر مي كند پس ولتاژ خروجي به شدت كاهش مي يابد. مدار الكتريكي اين مولد و مشخصه بارداري آن در شكل زير رسم شده است.
    **همیشه به این فکر کن که خداوند با توست**
  2. #2
    2007/12/02
    اصفهان
    494
    2

    پاسخ : ماشین هاي الكتريكي

    ادامه:

    كاربرد مولد كمپوند
    از مولد كمپوند اضافي در تحريك مولدهاي نيروگاهي استفاده مي شود. از مولدهاي كمپوند تخت جاي استفاده مي شود كه نياز به ولتاژ ثابتي باشد و فاصله بين مولد و مصرف كننده كم باشد. در صورتيكه به علت وجود فاصله بين مولد و مصرف كننده در سيمها افت ولتاژ بوجود آيد از مولد كمپوند در حالت فوق استفاده مي شود از مولد كمپوند نقصاني در جوشكاري استفاده مي شود چون در ابتدا براي ايجاد قوس نياز به ولتاژ بالا و بعد از برقراري قوس براي جلوگيري از افزايش جريان ولتاژ بايد بشدت كاهش يابد.
    وسايل تبديل انرژي الكترومكانيكي گردان را ماشينهاي الكتريكي مي گويند.
    طبقه بندي ماشينهاي الكتريكي
    ماشينهاي الكتريكي به دو طريق دسته بندي مي شوند:
    1- از نظر نوع جريان الكتريكي
    الف- ماشينهاي الكتريكي جريان مستقيم
    ب- ماشينهاي الكتريكي جريان متناوب
    2- از نظر نوع تبديل انرژي
    الف- مولدهاي الكتريكي كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كنند
    ب- موتورهاي الكتريكي كه انرژي الكتريكي را به انرژي مكانيكي تبديل مي كنند
    مباني ماشينهاي الكتريكي جريان مستقيم
    به طور كلي ماشينهاي الكتريكي جزء وسايل تبديل انرژي غير خطي هستند يعني هر تغيير در ورودي هميشه به يك نسبت در خروجي ظاهر نمي شود.
    مولد ساده جريان مستقيم
    يك مولد ساده جريان مستقيم از چهار قسمت اصلي زير تشكيل شده است
    1- قطبهاي مغناطيسي: كه وظيفه ايجاد ميدان مغناطيسي مولد را بعهده دارد و مي تواند بصورت آهنرباي دائم و يا آهنرباي الكتريكي باشد
    2- هاديها: براي ايجاد ولتاژ القايي به كار گرفته ميشود
    3- كموتاتور: در ساده ترين حالت از دو نيم استوانه مسي كه توسط ميكا نسبت به يكديگر عايق شده اند تشكيل مي گردد، وظيفه يك طرفه كردن ولتاژ و جريان القايي را در خارج از مولد بعهده دارد.
    4- جاروبك: جهت انتقال جريان الكتريكي از هاديها به مصرف كننده استفاده ميشود شكل زير مولد ساده جريان مستقيم را نشان ميدهد.
    طرز كار مولد ساده جريان مستقيم: با حركت هاديها در فضاي ما بين قطبها باعث ميشود ميدان مغناطيسي توسط هاديها قطع ميشود بدين ترتيب مطابق پديده القاء در هاديها ولتاژ القاء ميشود.ابتدا و انتهاي هر كلاف به يك نيم استوانه مسي يا يك تيغه كوموتاتور وصل ميشود روي تيغه هاي كوموتاتور دو عدد جاروبك بطور ثابت قرار داشته و با حركت هاديها تيغه هاي كموتاتور زير جاروبك مي لغزند، بدين ترتيب در ژنراتورهاي جريان مستقيم از طريق كوموتاتور ولتاژ القاء شده طوري به جاروبكها منتقل مي شود كه هميشه يكي از جاروبكها داراي پلاريته مثبت و ديگري داراي پلاريته منفي است. شكل موج ولتاژ القاء شده در اين مولد ساده بصورت زير مي باشد.
    براي افزايش سطح ولتاژ القاء شده و بهبود يكسوسازي بمنظور داشتن ولتاژ با دامنه ثابت بايد تعداد كلافها را افزايش داد و كلافها را به كمك تيغه هاي كوموتاتور سري كنيم.
    چگونگي تغيير پلاريته ولتاژ القايي در مولد ساده
    در مولد جريان مستقيم تغيير پلاريته ولتاژ خروجي عملاٌ در صورت ايجاد يكي از دو حالت زير ممكن مي شود:
    1- جهت چرخش آرميچر عوض شود
    2- جهت جريان در سيم پيچ قطبها تغيير كند در صورتيكه قطبها از نوع مغناطيس دائم نباشد
    چگونگي تغيير دامنه ولتاژ القايي در مولد ساده
    براي افزايش دامنه ولتاژ القا شده دو روش ممكن است:
    1- افزايش سرعت چرخش آرميچر كه باعث افزايش ولتاژ بصورت خطي مي شود
    2- افزايش جريان تحريك كه باعث افزايش ولتاژ مولد بصورت غير خطي مي شود
    موتور ساده جريان مستقيم
    موتور ساده از نظر ساختماني مانند مولد ساده جريان مستقيم مي باشد فقط نحوه كار آن با مولد ساده جريان مستقيم تفاوت دارد. در موتور ساده هاديها از طريق كوموتاتور و جاروبكها به يك منبع جريان مستقيم متصل مي شود در اينصورت جرياني از هاديها عبور كرده و در نتيجه مطابق نيروي لورنس به هاديها نيروي وارد ميشود و آنها به حركت در مي آيد.
    نحوه ايجاد نيرو و گشتاور در موتور ساده: در صورتيكه از يك كلاف تك حلقه كه بين قطبهاي يك مغناطيس قرار دارد جريان الكتريكي عبور كند مطابق شكل به بازوي سمت راست نيروي به سمت بالا و به بازوي سمت چپ نيروي بسمت پايين وارد مي شود با وارد شدن دو نيروي مختلف الجهت به دو طرف كلاف طبيعي است كه كلاف حول محورش شروع به دوران خواهد نمود يعني وارد آمدن زوج نيرو موجب ايجاد گشتاور لازم شده است.
    در اين موتور ساده اگر صفحه كلاف عمود بر خطوط ميدان مغناطيسي قرار گيرد به آن گشتاوري وارد نميشود در ضمن كه گشتاور وارد شده نيز دامنه يكنواخت ندارد براي رفع شدن اين معايب مي بايست تعداد كلافها و تيغه هاي كوموتاتور را افزايش داد كلافها در زاويه هاي مختلف قرار مي گيرد و با هم توسط تيغه هاي كوموتاتور سري مي شود.
    تغيير جهت گردش در موتور ساده DC: تغيير جهت گردش موتور ساده به دو روش زير ممكن است:
    1- تغيير جهت جريان در كلاف كه با تغيير پلاريته ولتاژ منبع از خارج موتور ميسر است
    2- تغيير قطبهاي مغناطيسي كه با تغيير جهت جريان در سيم پيچي تحريك ممكن است
    ساختمان ماشينهاي جريان مستقيم
    اجزاء تشكيل دهنده ماشينهاي جريان مستقيم را ميتوان به صورت زير دسته بندي كرد:
    1- قسمت ساكن شامل قطبها و بدنه
    2- قسمت گردان (آرميچر)
    3- مجموعه جاروبك و جاروبك نگهدارها
    هر كدام از قسمتهاي فوق بطور خلاصه توضيح داده مي شود
    1- اجزاء ساكن ماشينهاي جريان مستقيم: قسمتهاي ساكن جريان مستقيم شامل اجزاء زير هستند:
    الف- قطبهاي اصلي
    ب- قطبهاي كمكي
    ج- بدنه
    - قطبهاي اصلي: وظيفه اين قسمت تامين ميدان مغناطيسي مورد نياز ماشين است. قطبهاي اصلي خود شامل قسمتهاي زير مي باشد:
    - هسته قطب: از ورقهاي فولاد الكتريكي به ضخامت حدود 5/0 تا 65/0 ميلي متر با خاصيت مغناطيسي قابل قبول تشكيل مي شود.
    - كفشك قطب: شكل قطب به نحوي است كه سطح مقطع كوچكتر براي سيم پيچ اختصاص داده مي شود و قسمت بزرگتر كه كفشك قطبي نام دارد سبب شكل دادن ميدان مغناطيسي و سهولت هدايت فوران مغناطيسي به فاصله هوايي مي شود.
    - سيم پيچ تحريك: يا سيم پيچ قطب اصلي كه دور هسته قطب پيچيده مي شود، براي جريانهاي كم بايد تعداد دور سيم پيچ تحريك زياد باشد و سطح مقطع آن كم و برا ي جريانهاي زياد تعداد دور كم براي سيم پيچ لازم است و با سطح مقطع زياد
    - قطبهاي كمكي: قطبهاي كمكي در ماشينهاي جريان مستقيم از هسته و سيم پيچ تشكيل مي شوند، هسته قطبهاي كمكي را معمولاٌ از فولاد يكپارچه مي سازند. سيم پيچي قطبهاي كمكي نيز با تعداد دور كم و سطح مقطع زياد پيچيده مي شوند.
    - بدنه: قطبهاي اصلي، كمكي، جاروبك نگهدارها روي بدنه ماشين محكم مي شوند و بوسيله ماشين روي پايه اش نصب مي گردد. قسمتي از بدنه را هسته آهني تشكيل مي دهد كه براي هدايت فوران مغناطيسي قطبهاي اصلي و كمكي بكار مي رود اين قسمت طوق بكار مي رود. شكلهاي زير قطب اصلي و كمكي ماشين جريان مستقيم را نشان ميدهد.
    2- قسمت گردان يا آرميچر: در ماشينهاي جريان مستقيم قسمت گردنده را القاء شوند يا آرميچر مي نامند كه از اجزاء زير تشكيل شده است:
    الف- هسته آرميچر
    ب- سيم پيچي آرميچر
    ج- كلكتور يا يكسوكننده مكانيكي
    د- محور
    ﻫ- پروانه خنك كننده
    - سيم پيچي آرميچر: از كلافهاي مشابهي تشكيل مي شود كه با الگوي مناسب تهيه و در شيارها قرار مي گيرد سيم پيچي آرميچر مبتني بر اصول فني بوده و از طراحي ماشينهاي جريان مستقيم تبعيت مي كند.
    - كلكتور: از تيغه هاي مسي سخت كه توسط ميكا نسبت به يكديگر و محور ماشين عايق شده اند تشكيل مي شود.
    - محور: محور آرميچر ماشينهاي جريان مستقيم بايد از فولادي تهيه گردد كه خاصيت مغناطيسي آن كم اما استحكام مكانيكي كافي در مقابل تنشهاي برشي، كششي، و پيچشي را دارا باشد انتخاب كردن محور ضعيف خطر آفرين بوده و ممكن بوده در مواقع بروز خطا سبب انهدام كلي ماشين گردد.
    - پروانه خنك كننده: پروانه خنك كننده سبب تهويه و ازدياد عمر مفيد ماشين ميشود شكل زير آرميچر ماشين DC با پروانه خنك كننده را نشان ميدهد.
    3- جاروبك و جاروبك نگهدارها: وظيفه جاروبك نگهدار قرار دادن صحيح جاروبك روي تيغه هاي كلكتور است جاروبكها قطعاتي از جنس زغال يا گرافيت مي باشند كه براي گرفتن جريان از كلكتور يا دادن جريان به آن استفاده مي شود.
    سيم پيچي آرميچر ماشينهاي جريان مستقيم
    همانطور كه قبلا اشاره شد سيم پيچي آرميچر مبتني بر اصول فني خاص مي باشد كه در طراحي آن به نكات مهمي از قبيل استحكام مكانيكي، الكتريكي و حرارتي با عمر مفيد و عادي حدود 20 سال حداكثر گشتاور و جريان و ولتاژ با حداقل نوسانة جرقه كم بين زغال و كلكتور و صرفه جويي در مواد اوليه بايد توجه كرد.
    بسته به نياز كلافها مي توانند بطور سري يا موازي يا تركيبي از اين دو به همديگر وصل مي شوند.
    در صورتيكه كلافها با هم سري شوند نيرومحركه كلافها با هم جمع مي شوند و ولتاژ دهي آرميچر افزايش مي يابد. (سيم پيچي موجي)
    در صورتيكه كلافها موازي شوند تعداد مسيرهاي جريان موجود در آرميچر افزايش يافته و قابليت ولتاژ دهي آرميچر افزايش مي يابد. (سيم پيچي حلقوي)
    توضيح كامل روشهاي سيم پيچي آرميچر در كتابهاي سيم پيچي DC مطرح شده است و ما در اين جزوه به مصرفي آن كفايت مي كنيم.
    الف- سيم پيچي حلقوب شامل حلقوي ساده و حلقوي مركب
    ب- سيم پيچي موجي شامل موجي ساده و موجي مركب
    ج- سيم پيچي پاي قورباغه اي
    لازم است در اينجا تعداد مسيرهاي جريان كه در هر نوع ايجاد مي شود نيز معرفي شود. تعداد مسيرهاي جريان را با 2a نشان ميدهند كه بشرح زير است:
    2a = 2P حلقوي ساده
    2a = 2P.m حلقوي مركب
    2a = 2 موجي ساده
    2a = 2m موجي مركب
    2P : تعداد قطبهاي آرميچر ، m : درجه مركب بودن آرميچر
    عكس العمل مغناطيسي آرميچر:
    چنانچه ماشينهاي جريان مستقيم زير بار قرار گيرند يعني از سيم پيچي آرميچر جريان عبور كند يك ميدان عكس العمل (عرضي) توسط آرميچر ايجاد مي گردد. اين ميدان باعث مي شود منطقه خنثي در مولدها در جهت چرخش و در موتورها در خلاف جهت چرخش تغيير مكان دهد. عكس العمل آرميچر علاوه بر انحراف محور خنثي سبب تضعيف ميدان مغناطيسي اصلي مي شود در نتيجه نيرو محركه القاء شده در سيم پيچ كم شده، تلفات انرژي در ماشين و جرقه در زير جاروبكها بوجود مي آيد براي از بين بردن و يا كم كردن اثر عكس العمل در ماشينهاي جريان مستقيم مي توان از قطبهاي كمكي و يا در ماشينهاي بزرگتر از سيم پيچي جبرانگر هم استفاده كرد.
    پديده كموتاسيون:
    تغيير تماس جاروبك از يك تيغه كموتاتور به تيغه ديگر كموتاسيون نام دارد در اين جابجايي كلافي كه تحت كموتاسيون قرار مي گيرد چون توسط جاروبك اتصال شده بايد در صفحه خنثي قرار گيرددر عين حال چون جريان در اين كلاف در زمان كموتاسيون تغيير مقدار و جهت ميدهد سبب بوجود آمدن ولتاژ خود القايي در اين كلاف شده و از آنجا كه اين كلاف توسط جاربك و تيغه هاي كموتاتور اتصال كوتاه شده است جرقه نسبتاٌ شديد بين زغالها و كموتاتور بوجود مي آيد. قطبهاي كمكي براي رفع اين عيب موثر خواهد بود. اما در ماشينهاي كه قطب كمكي ندارند بهبود عمل كموتاسيون با تغيير محل جاروبكها (در جهت گردش در مولدها و در خلاف جهت گردش در موتورها) انجام گيرد. اين جابجايي درست كاملا امكان پذير و قابل مشاهده مي باشد.
    رابطه نيرومحركه القاي در ماشينهاي DC واقعي
    ولتاژ القاء شده در هر ماشين به سه عامل بستگي دارد:
    1- فوران مغناطيسي (Ф)
    2- سرعت زاويه اي رتور ماشين (ω)
    3- ضريب ثابت كه به ساختمان ماشين بستگي دارد (K)
    اين ولتاژ از رابطه رو به رو بدست مي آيد.
    مقدار K و ω را ميتوان از رابطه هاي زير بدست آورد
    P : تعداد جفت قطبهاي ماشين
    a : تعداد جفت مسيرهاي جريان
    Z : تعداد هادي هاي آرميچر
    n : سرعت آرميچر برحسب دور بر دقيقه
    رابطه گشتاور توليد شده در آرميچر ماشينهاي جريان مستقيم واقعي
    گشتاور توليد شده در ماشينهاي جريان مستقيم نيز به سه عامل بستگي دارد
    1- فوران مغناطيسي (Ф)
    2- جريان آرميچر (IA)
    3- يك ضريب ثابت (K)
    اين گشتاور از رابطه رو به رو بدست مي آيد.
    توان و راندمان در ماشينهاي DC
    در صورتيكه توان ورودي يك ماشين P1 و توان خروجي آن را P2 بناميم تفاوت اين دو تلفات ماشين نام دارد.
    ضريب بهره (راندمان): نسبت توان خروجي به توان ورودي ماشين را ضريب بهره مي گويند.

    تلفات در ماشينهاي DC: تلفات در ماشينهاي جريان مستقيم بصورت زير تقسيم بندي مي شوند.
    1- تلفات مكانيكي يا اصطكاكي (Pmec)
    2- تلفات آهني يا تلفات هسته (PFe)
    3- تلفات مسي (Pcu)
    - تلفات مكانيكي بعلت اصطكاك محور ماشين در ياتاقانها و اصطكاك جاروبكها با كلكتور و مقاومت هوا بوجود مي آيد.
    - تلفات هسته از تلفات هيسترزيس و تلفات ناشي از جريانهاي گردابي در هسته آرميچر تشكيل مي شود.
    - تلفات مسي يا ژولي در اثر عبور جريان از سيم پيچ هاي تحريك و آرميچر بوجود مي آيد.
    مولد تحريك شنت و كاربرد آن
    در این مولد مدار تحریك با آرمیچر به صورت موازی وصل می شود. جریان تحریك تابع ولتاژ خروجی و مقاومت مدار تحریك است و قسمتی (حدود 2 تا 3 درصد) از جریان آرمیچر را تشكیل میدهد. برای اینكه با جریان تحریك كم بتوان آمپر دور زیاد برای مولد تامین نمود باید تعداد دور سیم پیچ تحریك زیاد باشد و در نتیجه سطح مقطع آن باید كاهش یابد. ولتاژ خروجی مولد توسط یك مقاومت متغییر كه با سیم پیچ تحریك سری می شود تنظیم می گردد. مدار معادل الكتریكی مولد شنت بصورت زیر است:

    روابط زیر نیز برای جریان آرمیچر، ولتاژ خروجی و جریان تحریك مولد شنت برقرار است
    راه اندازی مولد شنت و تعیین نقطه كار: شروع كار مولد شنت بر اثر وجود پسماند مغناطیسی قطبها می باشد. یعنی ژنراتور بوسیله محرك با دور نامی به گردش در می آوریم به علت قطع خطوط قوای پس ماند توسط هادیهای آرمیچر، ولتاژی در آن القاء می شود. این ولتاژ به دو سر مدار تحریك اعمال می گردد. جریان كمی از سیم پیچ قطبها عبور می كند و درنتیجه فوران قطبها زیاد شده (در صورتیكه فوران هم جهت پسماند باشد) و نیرومحركه الكتریكی بیشتری در آرمیچر القاء میشود و ولتاژ دو سر مدار تحریك بالا می رود و مجدداٌ جریان تحریك افزایش یافته و ولتاژ القائی بزرگتر میشود. افزایش ولتاژ القائی تا جایی ادامه می یابد كه به VT = Rf.If برسد در این مقدار نیرومحركه القایی ثابت می ماند. اگر مشخصه Rf.If را رسم كنیم خطی بدست می آید كه در نقطه ای مانند B منحنی بی باری را قطع می كند به خط Rf.If خط القاء گفته میشود نقطه تقاطع این خط با منحنی نقطه كار مولد شنت می باشد.

    مقاومت بحرانی و دور بحرانی: در صورتیكه مقاومت مدار تحریك آنقدر زیاد شود كه خط القاء بر منحنی بی باری مماس شود مولد حالت ناپایدار خواهد داشت و نیرومحركه نمی تواند مقدار معینی داشته باشد در این حالت می گویند مقاومت مدار تحریك بحرانی است. اگر مدار تحریك مقاومت بیش از این داشته باشد دیگر مولد تحریك نخواهد شد در صورتیكه سرعت مولد آنقدر كم باشد كه مشخصه بی باری بر خط القاء مماس شود نیز مولد به حالت ناپایدار خواهد رسید این دور نیز به دور بحرانی معروف است.
    عوامل زیر سبب عدم تحریك یا عدم راه اندازی مولد شنت می شود
    1- پس ماند مغناطیسی ناچیز یا صفر باشد
    2- جهت جریان تحریك طوری باشد كه فوران ناشی از فوران پسماند را خنثی كند
    3- مقاومت مدار تحریك از حد معینی بیشتر باشد
    4- جهت گردش آرمیچر برعكس باشد كه سبب عكس شدن جریان تحریك می شود
    5- دور محور از حد معین كمتر باشد
    مشخصه مغناطیسی یا بی باری مولد شنت: همانطور كه در مورد مولد تحریك مستقل گفته شد مشخصه بی باری تغییرات نیرومحركه القاء شده آرمیچر نسبت به تغییرات جریان تحریك در شرایط بدون بار و دور ثابت است. مشخصه بی باری مولد شنت با مولد تحریك مستقل تفاوتی ندارد و بصورت زیر می باشد.

    مشخصه بارداری یا خارجی مولد شنت: این مشخصه تغییرات ولتاژ ترمینال به ازاء تغییرات جریان بار را در شرایط دور ثابت و ثابت RF = نشان میدهد.در مولد شنت سه عامل باعث افت ولتاژ خروجی خواهد شد:
    1- افت ولتاژ اهمی آرمیچر
    2- افت ولتاژ ناشی از عكس العمل
    3- افت ولتاژ خروجی بدلیل كاهش جریان تحریك بعلت كاهش ولتاژ خروجی ناشی از دو عامل بالا
    نكته مهم دیگر در این مولد با كاهش مقاومت بار جریان IL (بار) تا مقدار معینی Icr كه معمولاٌ 2 تا 5/2 برابر جریان نامی است افزایش می یابد و سپس رو به كاهش می رود. توجیه این مسئله (یعنی كاهش جریان بار با توجه به كم شدن مقاومت بار) به این صورت است كه در نقطه برگشت منحنی اثر كاهش ولتاژ خروجی آنقدر زیاد است كه نمی تواند جریان خروجی بار زیاد شود. شكل زیر مشخصه خارجی مولد شنت را در مقایسه با مولد تحریك مستقل را نشان میدهد.

    كاربرد مولد شنت: از این مولدها بعلت اینكه تنظیم ولتاژ بهتری دارند در شارژ باتری ها و تامین برق روشنایی و تغذیه سیم پیچ مولدهای نیروگاهی استفاده میشود.
    مولد مختلط یا كمپوند
    این مولد دارای دو سیم تحریك سری و موازی با آرمیچر می باشد.
    مولد كمپوند از نظر اتصالات سیم پیچ دارای دو نوع هستند:
    1- مولد كمپوند با انشعاب بلند
    2- مولد كمپوند با انشعاب كوتاه
    مدار الكتریكی این دو نوع كمپوند در شكل زیر نشان داده شده است
    روابط تحلیل مولد كمپوند بصورت زیر است
    مولدهای كمپوند از نظر جهت فوران سیم پیچ تحریك سری بصورت زیر تقسیم بندی می شود:
    1- مولد كمپوند اضافی
    2- مولد كمپوند نقصانی
    - مولد كمپوند اضافی: فوران ناشی در این مولد فوران سیم پیچ تحریك شنت را تقویت می كند در این مولد سیم پیچ تحریك شنت نقش اصلی را بعهده دارد و سیم پیچ تحریك سری برای جبران افت ولتاژ اهمی و عكس العمل مغناطیسی آرمیچر به كار میرود.
    - مولد كمپوند نقصانی: در این مولد فوران ناشی از سیم پیچ تحریك سری با فوران ناشی از سیم پیچ تحریك شنت مخالفت می كند.

    مشخصه خارجی مولد كمپوند اضافی
    برای مولد كمپوند اضافی در حالت بارداری ممكن است یكی از سه حالت زیر پیش آید:
    1- با افزایش بار ولتاژ خروجی نیز زیاد شود این حالت را فوق كمپوند می گویند. در این حالت افزایش نیرومحركه ناشی از سیم پیچ سری بزرگتر از افت ولتاژ در اثر مقاومت و عكس العمل آرمیچر است.

    2- با افزایش بار ولتاژ خروجی ثابت می ماند، در این حالت افت ولتاژ ناشی از مقاومت و عكس العمل با افزایش نیرومحركه ناشی از سیم پیچ سری جبران میشود. به این حالت كمپوند مسطح گفته میشود.

    3- با افزایش بار، ولتاژ خروجی كاهش می یابد در این حالت افزایش نیرومحركه ناشی از سیم پیچ سری نمی تواند افت ولتاژها را جبران كند این حالت را زیر كمپوند می گویند. حتی در این حالت افت ولتاژ مولد كمتر از افت ولتاژ مولد شنت می باشد. شكل این مشخصه ها در زیر رسم شده است.

    مشخصه بارداری مولد كمپوند نقصانی
    در این مولد ولتاژ خروجی با افزایش بار به شدت كاهش می یابد بدلیل اینكه با افزایش بار جریان سیم پیچ تحریك سری زیادتر و در نتیجه فوران سیم پیچ سری بیشتر شده و میدان اصلی را تضعیف تر می كند پس ولتاژ خروجی به شدت كاهش می یابد. مدار الكتریكی این مولد و مشخصه بارداری آن در شكل زیر رسم شده است.
    كاربرد مولد كمپوند
    از مولد كمپوند اضافی در تحریك مولدهای نیروگاهی استفاده می شود. از مولدهای كمپوند تخت جای استفاده می شود كه نیاز به ولتاژ ثابتی باشد و فاصله بین مولد و مصرف كننده كم باشد. در صورتیكه به علت وجود فاصله بین مولد و مصرف كننده در سیمها افت ولتاژ بوجود آید از مولد كمپوند در حالت فوق استفاده می شود از مولد كمپوند نقصانی در جوشكاری استفاده می شود چون در ابتدا برای ایجاد قوس نیاز به ولتاژ بالا و بعد از برقراری قوس برای جلوگیری از افزایش جریان ولتاژ باید بشدت كاهش یابد.

    مولد تحريك سری و كاربرد آن
    مولد تحریك سری
    در این ژنراتور آرمیچر با سیم پیچ تحریك به صورت سری قرار می گیرد. از آنجا كه جریان بار از سیم پیچ آرمیچر و سیم پیچ تحریك عبور كند باید سیم پیچ تحریك دارای سطح مقطع زیاد و تعداد دور كم باشد. مدار الكتریكی مولد سری و روابط آن بصورت زیر است.

    IS : جریان مدار تحریك سری
    RS : مقاومت سیم پیچ تحریك سری

    مشخصه بی باری مولد سری: (VT = f(IL) n = const)
    برای بدست آوردن مشخصه خارجی مولد سری دور مولد را به دور نامی می رسانیم، اول حداكثر مقاومت بار را در مدار قرار میدهیم در این حالت با عبور جریان كم از آرمیچر و تحریك، فوران اگر مخالف پسماند نباشد نیرومحركه القایی زیاد میشود كه در نتیجه ولتاژ خروجی افزایش می یابد با كاهش مقاومت بار جریان تحریك كه برابر با جریان بار و آرمیچر است زیاد شده و قطبها را اشباع می كند و در نتیجه فوران ثابت می ماند و چون دور هم ثابت است نیرومحركه ثابت می ماند اما ولتاژ خروجی به دلایل زیر كاهش می یابد:
    1- افت ولتاژ در هادی های آرمیچر
    2- افت ولتاژ در سیم پیچی تحریك
    3- افت ولتاژ بر اثر عكس العمل مغناطیسی آرمیچر

    كاربرد مولد سری: مورد استفاده مولد سری خیلی كم است چون ولتاژ دو سر آرمیچر بر اثر تغییر جریان بار به طور قابل ملاحظه ای تغییر می كند. در عین حال از این مولد بعنوان جبران كننده افت ولتاژ خطوط جریان مستقیم استفاده میشود
    **همیشه به این فکر کن که خداوند با توست**
نمایش نتایج: از 1 به 2 از 2

موضوعات مشابه

  1. ايجاد قوس الكتريكي با باتري
    توسط hadi_sl66 در انجمن مباحث دیگر علم الکترونیک
    پاسخ: 34
    آخرين نوشته: 2020/03/14, 21:15
  2. علاعم الكتريكي
    توسط Term boghi در انجمن مفاهیم پایه برق و الکترونیک
    پاسخ: 1
    آخرين نوشته: 2010/11/03, 14:22
  3. حذف هارمونيك موتور هاي الكتريكي
    توسط mojtaba_led در انجمن سیستم های قدرت
    پاسخ: 4
    آخرين نوشته: 2010/08/22, 21:59
  4. قوس الكتريكي چيست؟
    توسط hosein-eghbali در انجمن مفاهیم پایه برق و الکترونیک
    پاسخ: 1
    آخرين نوشته: 2009/02/27, 12:58
  5. ماشين هاي الكتريكي
    توسط امیرعلی بلورچیان در انجمن جزوات دانشگاهي
    پاسخ: 0
    آخرين نوشته: 2006/05/02, 15:33

کلمات کلیدی این موضوع

علاقه مندي ها (Bookmarks)

علاقه مندي ها (Bookmarks)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •